Ranking jerárquico del índice Dow Jones usando el método ELECTRE-III
XML
PDF

Palabras clave

Proceso jerárquico multicriterio
ELECTRE III
RATIOS FINANCIERAS
DOW JONES multicriteria hierarchical process
FINANCIAL RATIOS
DOW JONES

Cómo citar

Munoz Palma, M., Miranda Espinoza, E. L. ., & Álvarez Carrillo, P. A. . (2022). Ranking jerárquico del índice Dow Jones usando el método ELECTRE-III. Revista Vértice Universitario, 24(93). https://doi.org/10.36792/rvu.v93i93.43

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Derechos de autor 2021

Resumen

El objetivo del artículo es presentar un enfoque de proceso jerárquico multicriterio para la toma de decisiones en la selección de acciones de las principales empresas que cotizan en el índice Dow Jones. Uno de los problemas que suelen enfrentar los inversores es decidir qué acciones deben incluirse en un portafolio de inversión. El artículo permite a los inversores dar respuesta a esa pregunta, mediante un enfoque jerárquico y el método ELECTRE III utilizando diferentes criterios basados en las ratios financieras de rentabilidad, liquidez, mercado y eficiencia. En este proceso el inversor genera un ordenamiento a un nivel global y un ordenamiento en subgrupo de criterios considerando sus preferencias.

https://doi.org/10.36792/rvu.v93i93.43
XML
PDF

Citas

Aldalou, E., & Perçin, S. (2018). Financial Performance Evaluation of Turkish Airline Companies Using Integrated Fuzzy AHP Fuzzy Topsis Model. Uluslararası İktisadi ve İdari İncelemeler Dergisi.

Albadvi, A., Chaharsooghi, S., & Esfahanipour, A. (2006). Decision making in stock trading: An application of PROMETHEE. European Journal of Operational Research, 177(2), 673–683.

Almeida J., Figueira, J. R., y Roy, B. (2006). The software ELECTRE III-IV: Methodology and user Manual, Paris, Francia: University Paris-Dauphine Lamsade.

Altınırmak, S., Gülcan2, B., & Çağlar, K. (2016). Analyzing securities investment trusts traded in BIST via AHP PROMETHEE methodology. Journal of International Scientific Publications, 10, 458–472.

Angilella, S., Catalfo, P., Corrente, S., Giarlotta, A., Greco, S., & Rizzo, M. (2018). Robust sustainable development assessment with composite indices aggregating interacting dimensions: The hierarchical-SMAA-Choquet integral approach. Knowledge-Based Systems, 158, 136–153.

Ariza, M., & Cadena, J. (2017). Selección de portafolios de renta variable: una propuesta a través de betas al alza y a la baja en el mercado colombiano. Criterio Libre. 11(19), 225-243.

Bahloul, S., & Abid, F. (2013). A combined analytic hierarchy process and goal programming approach to international portfolio selection in the presence of investment barriers. International Journal of Multicriteria Decision Making, 3(1), 1–20. https://doi.org/10.1504/IJMCDM.2013.052455

Basilio, M., De Freitas, J., Kämpffe, M. G., & Rego, R. (2018). Investment portfolio formation via multicriteria decision aid: A Brazilian stock market study. Journal of Modelling in Management, 13(12), 394–417. https://doi.org/https://doi.org/10.1108/JM2-02-2017-0021

Bay, Y., Yudan, W., & Li Quian. (2017). an optimal trade-off model for portfolio selection with sensitivity of PARAMETERS Yanqin Bai ∗ , Yudan Wei and Qian Li. Journal of Industria l and Management Optimization, 13(2), 947–965. https://doi.org/10.3934/jimo.2016055

Bodie, Z. (2019). Merton and the Science of Finance. Annual Review of Financial Economics, 11(1), 1–20.

Bodie, Z., & Merton, R. (2003). Finanzas. Pearson Eduación.

Boonjing, V., & Boongasame, L. (2016). Combinatorial Portfolio Selection with the ELECTRE III method: Case study of the Stock Exchange of Thailand (SET). Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, 8(4), 719–724.

Cao, L. J., & Tay, F. E. H. (2003). Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks, 14(6), .1506–1518.

Cervelló, R., Guijarro, F., & Michniuk, K. (2014). Estrategia de inversión bursátil y reconocimiento gráfico de patrones: Aplicación sobre datos intradía del índice Dow Jones. Cuadernos de Administración.

Corrente, S., Figueira, J. R., Greco, S., & Słowiński, R. (2017). A robust ranking method extending ELECTRE III to hierarchy of interacting criteria. Omega (United Kingdom), 73, 1–17.

Corrente, S., Greco, S., & Słowiński, R. (2012). Multiple criteria hierarchy process in robust ordinal regression. Decision Support Systems, 53(3), 660–674. https://doi.org/10.1016/j.dss.2012.03.004

Creamer, G. (2012). Model calibration and automated trading agent for euro futures. Quantitative Finance, 12(4), 531–545.

Creamer, G., & Freund, Y. (2007). A boosting approach for automated. Journal of Trading, 2(3), 84–96.

Chahuán, K. (2018). Relación Dow Jones sustainability index Chile e ingresos, resultados y rentabilidad sobre patrimonio de empresas. Capic Review, 16. https://doi.org/10.35928/cr.vol16.2018.68

Dempster, M. A. H., Payne, T. W., Romahi, Y., & Thompson, G. W. T. (2001). Computational learning techniques for intraday FX trading using popular technical indicators. EEE Transactions on Neural Networks, 12(4), 744–754.

Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. 155, 752–770. https://doi.org/10.1016/S0377-2217(02)00881-0

Elselmy, H., Ghoneim, A., & Elkhodary, I. (2019). Portfolio selection factors: Egypt equity market case study. ACM International Conference Proceeding Series, 212–216.

Giannoulis, C. & Ishizaka, A. (2010). A web-based decision support system with ELECTREIII for a personalized ranking of British universities,” Decision Support Systems, 48(3), 488-497.

Govindan, K., & Jepsen, M. B. (2016). ELECTRE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 250(1), 1–29.

Guerrero-Baena, D. D., Gómez-Limón, J. A., & Fruet Cardozo, V. V. (2014). Are multi-criteria decision making techniques useful for solving corporate finance problems? A bibliometric analysis. Revista de Metodos Cuantitativos Para La Economia y La Empresa, 17(1), 60–79.

Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1993). Stock market prediction system with modular neural networks. Neural Networks in Finance and Investing, 343–357.

Lima, A., & Soares, V. (2013). Financial ratios applied to portfolio selection : Electre III methodology in buy-and-hold strategy Indicadores financeiros aplicados à seleção de carteiras : Metodologia Electre III numa estratégia de buy-and-hold. Organizações Em Contexto, 9(17), 281–319.

Lopez-Dumrauf, G. (2003). Finanzas corporativas. Buenos Aires: Grupo Guia.

Lu, C. J., Lee, T. S., & Chiu, C. C. (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2), 115–125.

Macharis, C., Brans, J. P., Mareschal, B., (1998) The GDSS ROMETHEE procedure: a PROMETHEE–GAIA based procedure for group decision support, Journal of Decision Systems, 7, pp. 283–307.

Mahfoud, S., & Mani, G. (1996). Financial forecasting using genetic algorithms. Applied Artificial Intelligence, 10(6), 543–565.

Mandziuk, J., & Jaruszewicz, M. (2011). Neuro-genetic system for stock index prediction. Journal of Intelligent & Fuzzy Systems, 22(2–3), 93–123.

Milanesi, G. (2016). Un modelo de opciones barreras para estimar las probabilidades de fracasos financieros de empresas. Barrier options model for estimate firm´s probabilities for financial distress. TEC Empresarial. https://doi.org/10.18845/te.v10i3.2936

Mansour, N., Cherif, M. S., & Abdelfattah, W. (2019). Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Systems With Applications.

Mohammad, J., Mohammad, E., & Sanam, B. (2012). Selection of Portfolio by using Multi Attributed Decision Making. American Journal of Scientific Research, 1450-223X(44), 15–29.

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Transactions on Neural Networks, 12(4), 875–889.

Moody, J., Wu, L., Liao, Y., & Saffell, M. (1998). Performance functions and reinforcement learning for trading systems and portfolios. Journal of Forecasting, 17(5), 441–471.

OJ., L., J.W., & Zhang, B. T. (2002). Stock trading system using reinforcement learning with cooperative agents. Proceedings of the 19th International Conference on Machine Learning, 451–458.

Pätäri, E., Karell, V., Luukka, P., & Yeomans, J. S. (2017). Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence. European Journal of Operational Research, 265(2), 655–672. https://doi.org/10.1016/j.ejor.2017.08.001

Shabani Vezmelai, A., Lashgari, Z., & Keyghobadi, A. (2015). Portfolio selection using ELECTRE III: Evidence from Tehran Stock Exchange. Decision Science Letters, 4(2), 227–236.

Shah, P., Mallory, M. L., Ando, A. W., & Guntenspergen, G. R. (2017). Fine-resolution conservation planning with limited climate-change information. Conservation Biology, 31(2).

Sharpe, W. (1964). Capital Asset Prices. The Journal of Finance, 19(3).

Spronk, J., Steuer, R. E., & Zopounidis, C. (2016). Multicrieria Decision Aid/Analysis in Finance. In International Series In operations Research & Management Science (pp. 1011–1065).

Suárez, L., Pimiento, N., & Duarte, J. (2018). Selección de portafolios de inversión socialmente responsables usando el método de las restricciones y la técnica multicriterio Proceso Analítico Jerárquico. Revista EIA. https://doi.org/10.24050/reia.v0i0.634

Sun, Y. F., Grace, A., Teo, K. L., & Zhou, G. L. (2015). Portfolio optimization using a new probabilistic risk measure. Journal of Industrial and Management Optimization, 11, 1275–1283.

Sun, X., Zheng, X. & Li, D. (2013). Recent advances in mathematical programming with semicontinuous variables and cardinality constraint. Journal Operations Research Society of China, 1, 55–77.

Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48(1–4), 559–565.

Teo, K. & Yang, X. (2001). Portfolio selection problem with minimax type risk function. Annals of Operations Research, 101, 333–349.

Tsang, E., Yung, P., & Li, J. (2004). ‘EDDIE-automation’, A Decision Support Tool for Financial Forecasting. Decision Support Systems, Periodical Style, 37, 559–565.

Tian, Y., Fang, S., Deng, Z. & Jin, Q. (2016). Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial and Management Optimization, 12, 1041–1056.

Useche, A. J. (2015). Construcción de portafolios de inversión desde las finanzas del comportamiento: una revisión crítica. Cuadernos de Administración. https://doi.org/10.11144/javeriana.cao28-51.cpif

Zhu, S.S., Li, D., & Sun, X. L. (2010). Portfolio selection with marginal risk control. The Journal of Computational Finance, 14(1), 3–28. https://doi.org/doi:10.21314/JCF.2010.213